# The CRISIS Wide-Area Security Architecture

Amin Vahdat March 18, 1998

http://now.cs.berkeley.edu/WebOS

# WebOS: System Support for Wide-Area Applications

| Requirement                 | WebOS Support               |
|-----------------------------|-----------------------------|
| Migrate data                | Coherent persistent storage |
| Migrate code                | Safe remote execution       |
| Locate data/code            | Naming                      |
| Prevent unauthorized access | Security/authentication     |

→ WebOS provides a common infrastructure for the development and execution of wide-area applications

## **CRISIS Security**



- Secure access to remote programs/data
  - » Rights transfer
  - » Authentication
  - » Revocation

# Impending CRISIS for Wide-Area Applications



Existing security measures do not match application needs

### Outline

- Problem Statement/Context
- Motivation (Rent-A-Server)
- Implementation
- Contributions
- System Scenarios
- Conclusions

## Motivating Application: Rent-A-Server



- Dynamically replicate services in response to access patterns
  - » Allocation for peak vs. average utilization
  - » Exploit geographic locality, reduce consumed bandwidth
- Service state securely and automatically distributed
- Transparently choose best replica without user intervention

### Rent-A-Server



7

## Rent-A-Server Security Issues

- Remote Process Execution
  - » Buggy/malicious programs
  - » Authorization
- Secure access to sensitive data
  - » Redundancy
- Fine-grained rights transfer
  - » Short-term, revocable rights
  - » Avoid modifying ACL's
- Performance
  - » Avoid validation with central authority on every access

## Other Applications

- SchoolNet
- Wide Area Collaboration
- Mobile Login
- Large Scale Remote Execution
- Encrypted Intermediate Caches
- Database access

#### **CRISIS** in Context

- Wide-Area characteristics:
  - » Availability of remote computation
  - » Lack of trust
  - » Poor network connectivity
- Wide-area security requirements:
  - » Performance/Availability
  - » Fine-grained rights transfer
  - » Multiple administrative domains
  - » Revocation

## Outline

- Problem Statement/Context
- Motivation (Rent-A-Server)
- Implementation
- Contributions
- System Scenarios
- Conclusions

### Alternatives

#### Secure login

- » Lacks fine-grained control over access rights
- » Overhead of creating accounts everywhere

#### Kerberos

- » Synchronous communication with ticket granting servers
- » Share secrets between administrative domains, single point of attack

#### Public Key

- » How to perform revocation
- → No reasoning about fine-grained transfer of rights or remotely programmable resources

### **CRISIS Contributions**

- Transfer certificates
  - » Light-weight revocable capabilities
  - » Delegation, roles
  - » Fine-grained rights transfer
- Flexible support for security/performance/availability
- Revocation as first class operation
- Proof-carrying requests
  - » Complete accountability
  - » Simplify authorization

### **CRISIS** Architecture



## **CRISIS** Implementation

- Security managers map processes to security domains
  - » Certificate bag describes privileges associated with processes
  - » e.g., new security domain created for a login shell
- Certificates describe privileges
  - » X.509/SSL (public key)
- Dual Endorsement
  - » CA long timeout, offline
  - » OLA short timeout, online
- Simple Revocation

### **Outline**

- Problem Statement/Context
- Motivation (Rent-A-Server)
- Implementation
- Contributions
  - » Transfer Certificates
  - » Authorization
  - » Revocation
- System Scenarios
- Conclusions

# Problem: Fine-Grained Rights Transfer

- Overloaded Berkeley server harvests Texas surrogate
- Allow Texas to access customer database, not my email
- Avoid modifying ACL's

#### **Transfer Certificates**

- Light-weight revocable capabilities
  - » Transfer rights from one principal to another
- Delegation
  - » Databases
  - » sendmail
- Fine-grained rights restriction
  - » Different levels of trust for different nodes
  - » Roles

## Access Control Lists vs. Capabilities

#### Access Control Lists

- » Explicitly describe users privileged to access a resource
- » Issues: Error prone, cumbersome

#### Capabilities

- » Distribute opaque unforgeable ticket granting access
- » Issues: confinement, revocation

#### **→** Transfer certificates

- » Explicitly describe privileges transferred (source, destination)
- » Reference monitor determines if *entire chain* of transfers valid
- » Revocation as first class operation

## Problem: Fine-Grained Rights Transfer

- Overloaded Berkeley server harvests Texas Surrogate
- Avoid modifying ACL's

- Solution:
  - » Berkeley signs xfer certificate stating privileges granted to Texas
- Example:
  - » ACL(inputFile): Berkeley
  - » [Texas may access inputFile]<sub>Berkeley</sub> [Berkeley Key is x]<sub>CA</sub>

# Problem: Secure Access to Sensitive Data

- Allow Texas to access customer database, not my email
- Texas must prove it is authorized for DB access

### Authorization

- Hybrid ACL/capability approach
  - » ACL's maintain list of authorized principals
  - » Transfer certificates grant revocable capabilities
- Reference Monitor validates chain of transfers
  - » Time
  - » Complete accountability
  - » Path of trust: hierarchical trust
  - » Valid signature (CA)/valid counter-signature (OLA)

# Problem: Secure Access to Sensitive Data

- Allow Texas to access customer database, not my email
- Texas must prove it is authorized for DB access

- Solution, Texas transmits:
  - » Identity certificate: CA says this key speaks for Texas
  - » Transfer certificate: Berkeley says Texas can access DB
- ACL contains only Berkeley entry

# Problem: Revoking Rights

- Load subsides, Berkeley discontinues use of Texas
- Berkeley discontinues Texas access to DB
- Protect against future compromise

#### Revocation

- Valid certificates contain dual signatures
  - » Certification authority: sign with long timeout (offline)
  - » On-Line Agent: sign with short timeout (highly available)
- Certificates cached if both signatures are fresh
  - » Tradeoff security/performance/availability
  - » Redundancy: violate two entities in different ways
- Revocation as first-class operation
  - » Inform On-Line Agent no further endorsement of certificate
  - » Rights revoked modulo timeout of certificate

# Problem: Revoking Rights

- Load subsides, Berkeley discontinues use of Texas
- Berkeley discontinues Texas access to DB
- Protect against future compromise

#### Solution:

» Berkeley instructs OLA: no longer endorse transfer certificate

### Outline

- Problem Statement/Context
- Motivation (Rent-A-Server)
- Implementation
- Contributions
- System Scenarios
  - » File Access
  - » Login
  - » Remote Execution
- Conclusions

# Integrating CRISIS with the File System



## Login Example



## Running Remote Code

- Java: architecture independence
  - » Security classes determine application privileges
  - » Virtual machine rejects disallowed operations
- Janus[Goldberg96]: UNIX compatibility
  - » Solaris **proc** filesystem intercepts system calls
  - » User level process disallows "dangerous" system calls
  - » Per-process profile determines dangerous operations
- Future work
  - » Determining least privileges required to complete task
  - » Resource allocation among competing processes

## Rent-A-Server: Putting It All Together

- Hierarchical trust among administrative domains
- Secure access to sensitive data (customer DB)
- Execution of programs in sandbox
  - » Protect surrogates from buggy/malicious programs
- Transfer certificates
  - » Fine-grained, short-lived access
  - » No need to modify ACL's
- Proof-carrying requests simplify authorization

### **Conclusions**

- Design and initial implementation of wide-area security system
- Enable secure access to global resources
- Transfer certificates simplify delegation, roles for rights restriction

http://now.cs.berkeley.edu/WebOS